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1. INTRODUCTION

Indole is the simplest model for studying the spectroscopy of tryptophan-containing proteins.
Considerable interest has focused on the large fluorescent red shift in polar solvents (Creed 1984), but the
electronic structure and relative energetics of the two singlet excited states (designated L and L, for the
first and second states, respectively) in vacuo must be understood for a theoretical analysis of the solvent
perturbations. The first and second excited states in absorption are designated Ly and L, for historical
reasons. These designations are maintained for calculations at the ground-state geometry, and the
similarity of the electronic behavior at other geometries is used to follow and characterize the states. A
thorough semiempirical analysis of the electronic structure of indole and the excited states has been
developed (Callis 1991). Such calculations assist in the assignment of absorption origins of the two
excited states for the spectra in the gas phase or water (Ilich, Haydock, and Prehdergast 1989) and for
various indoles dissolved in either cyclohexane or butanol (Anderson et al. 1986; Rehms and Callis 1987).
However, in the analysis of near-ultraviolet (UV) fluorescent excitation spectra there has been no success
in explicitly identifying the second excited state (Bersohn, Even, and Jortner 1984; Hager and Wallace
1984; Rizzo, Park, and Levy 1986). It has been suggested that, in the gas phase, the N-H bond may
dissociate in this state and not fluoresce (Glasser and Lami 1981; Lami and Glasser 1986; Hager, Demmer,
and Wallace 1987; Demmer et al. 1990). Mixing of the two excited states also was shown to depend on
the proton donation of the solvent molecule to the  density of the indole (Tubergen and Levy 1991).
Energy surface and electronic characteristics of the excited states in vacuo and in the presence of solvent
are then important to understanding both the absorption and fluorescent Franck—Condon (FC) envelopes.
The semiempirical calculations cannot vary the geometry without introducing more parameters.
Semiempirical studies must choose from a wide parameter space, and this is difficult even when the
experimental situation has the utmost clarity, which is not true for indole. An ab initio study is then
warranted even at the ground-state geometry, and fluorescence properties require calculations at an

approximation to the excited-state geometries.

A number of different models have been presented for the fluorescent red shift (Creed 1984), but we
will explore only the one assuming solvent reorganization in the excited state (Lami and Glasser 1986;
Hager, Demmer, and Wallace 1987; Demmer et al. 1990; Tubergen and Levy 1991; Suppan 1990). The
influence of the media on the spectroscopic transitions is estimated from the solute dipole-solvent reaction
dipole interaction. Dipole moments of the electronic states are obtained by ab initio quantum calculations

and the solvent effect obtained by both classical (Suppan 1990) and quantum methods (Karelson and




Zemer 1990; Wong, Frisch, and Wiberg 1991; Karelson and Zemer 1992; Garmer 1992; Krauss and
Garmer 1993). Although reaction field (RF) models within the semiempirical theories are well established
(Karelson and Zemer 1990; 1992), again it is difficult to obtain the electronic and energetic changes that
occur with the combine;l effects of geometry and solvent perturbations. An ab initio description can
provide insight into the electronic structure of the excited states and, therefore, into the unusual fluorescent

red shift observed for indole.

The adiabatic dissociation behavior of the ground and excited states will also be analyzed. In a
previous study (Krauss and Garmer 1993), we have calculated the excited-state spectrum of the neutral
indole radical produced by dissociating the N-H bond. From this catalog of excited states, we know the
order of the ¢ and = radicals and can deduce the possibility of barriers as well as determine which excited

states are above dissociation limits.
2. METHOD

The electronic description of the excited states requires a multiconfiguration representation. This is
especially true when the RF perturbs and shifts these states. A balanced treatment of the correlation in
the ground and excited states can be approached by means of first-order configuration interaction (FOCI)
calculations (Krauss and Roszak 1992). The reference space for the FOCI provides all possible couplings
among the chosen active orbitals. All configurations generated in this reference space interact through
the all-electron Hamiltonian. Single excitations from this base set of configurations into the virtual space
relaxes the originally chosen set of active or valence (V) orbitals. Interactions among the reference
configurations and all configurations arising by single excitation from the reference set yield an FOCI
secular equation which is solved for the relevant number of V states. The molecular orbital basis can then
be improved by iterating with the natural orbitals obtained from the configuration interaction (CI) wave

functions (Bender and Davidson 1966).

All FOCI calculations were done with the GAMESS system of codes (Schmidt et al. 1987) modified
by inclusion of the dipole RF into the Hamiltonian (Garmer 1992; Krauss and Garmer 1993). The

perturbation couples the molecular dipole and the RF, H /= -pR;, with R; = (p i/a3) 2f (D), where
f(D) =(D-1)/(2D +1) and D is the dielectric constant. The total energy includes the solvent

polarization. The reaction field, R, for the dipole-dipole interaction between the solute and solvent is




determined by the initial state dipole moment, jr;, of the radiating system. Although the radius a has
been related 10 the volume of the molecule, it is essentially an artifact of the multipolar expansion and
may be smaller than the molecular radius. The water is presumed to relax and orient by the dipolar field

of either the ground state in absorption or the excited state in fluorescence in an FC transition. The

classical shift formula is given by Suppan (1990),

AE,, = -p, (p,-n,) a”> 2(rDy-g(m)] - (uﬁ—uz) a~3g(n),

with g(n) = (n 2_ 1)/ (2n L 1) and n being the refractive index. The classical expression assumes that
the radiative transition is sufficiently fast that the water molecules do not relax during the transition but
the solvent polarization responds to both the ground- and excited-state dipole moments. The dipole
moments used in the classical shift formula are obtained with the RF FOCI. The quantum calculation as
opposed to the classical analysis does not distinguish between coupling time scales and assumes that the

rturbation, H / , is present during the transition and acts on both initial and final states.
pe p g

Since we are interested in both the absorption and fluorescent transitions, geometries were obtained
by gradient optimizations for both the ground and excited states. Closed and open shell restricted
Hartree-Fock SCF optimizations obtained ground (X) and triplet (T) excited-state geometries in single
configuration calculations using a double-zeta level basis with K-shell orbitals replaced by compact
effective core potentials (Stevens, Basch, and Krauss 1984). Gaussian 90 (Frisch et al. 1990) was used
to obtain estimates of the geometry of the first excited singlet state in two ways. First, the excited-state
geometry was optimized in a complete active space multiconfiguration self-consistent-field (CAS-MCSCF)
calculation, where four electrons were distributed among four m orbitals using a 3/21G basis. This
MCSCF optimization did converge for a first excited state (M), yielding a geometry substantially different
from the triplet one. It is expected that the M geometry is closer to the equilibrium geometry of the Ly
state since it is determined by optimizing the dominant & to m* excitations. Second, the CI singles
apprcach in Gaussian (Frisch et al. 1990; Foresman et al. 1992) was used to optimize the geometries for
the lowest two excited singlets, and both excited states had bond distances that were different from either
T or M. As opposed to the T and M structures where excitations are localized to the benzene ring, the
C,—C; bond on the pyrrole ring is also affected. The energies from the first excited-state structure, S1,
are reported in Table 1 as an example of this family of structures because the C,~C; bond is lengthened




Table 1. Total Energies (Hartree), Dipole Moments (e-bohr), and Excitation Energetics (cm‘l)

I A. In Vacuo Indole FOCI Energies (—E) and Dipole Moments
State X T M S1
1 . 57.57781 57.55630 57.56236 57.57094
0.79 0.84 0.84 0.78
exp® 0.84
2 57.38487 57.38512 57.38995 57.37806
0.83 0.88 0.85 1.37
exp® 0.90
3 57.36448 57.37498 57.36920 57.36725
2.30 2.54 2.55 0.938
epr 2.12

B. RF Indole FOCI Energies (-E) and Dipole Moments

X
tat
State RF-X RF-L,
1 57.57931 57.57948 57.57736 57.57613
1.06 1.16 1.59 1.74
2 57.38630 57.38650 57.38745 57.38739
1.13 1.25 2.37 2.78
3 57.36942 57.37091 57.37672 57.37689
2.57 2.65 269 2.59
RE-L,
t
State T M S1
1 5755544 5755002 S57.56138 S7.55610 57.57194  57.56994
1.75 2.18 1.73 2.13 121 1.52
2 5739215 5739535 57.38854 5738913 57.38377  57.38598
3.69 4.17 1.54 4.10 227 2.73
3 5738400 57.37795 57.38614 57.38238 57.36796  57.36504
1.61 1.97 3.66 1.86 1.06 1.26

8See Lami and Glasser (1986).
YExperimental data for excited states are summarized in Callis (1991).




Table 1. Total Energies (Hartree), Dipole Moments (e-bohr), and Excitation Energetics (cm’l)

(Continued)
C. Relative FOCI Energetics

AE X T M S1 RF
12 42,347 37,571 37,836 42,332 none
. 41,682 35,836 37,935 41,299 La 1
41,422 33,946 36,645 40,375 La, 2

42,360 X, 1

42,353 X, 2

34,965 exp

13 46,820 39,797 42,390 44,705 none
44,036 37,625 38,461 44,768 Ly, 1
43,728 36,793 38,127 44,970 Ll 2

46,066 X, 1

45,777 X, 2

37,635 ' exp

23 4,473 2,226 4,554 2,373% none
2,354 -1,789 526 3,470% L, 1
2,306 -2,847 -1,482 4,596* L, 2

3,706 X, 1

3,424 X, 2

AE T-X M-X S1-X RF
11° 4,721 3,392 1,507 none
33” -2,303 -1,035 -608 none

*Assuming AE,, is equivalent to AE,p, then these values are all negative.

in S1. This bond has been singled out as relevant to curve crossing between the two excited states
(Callis 1991), and a comparison of energies at S1 with the other three is of interest. The structure
optimized for the second excited state actually yielded substantially the highest energy for this state among
all of the geometries at comparable FOCI calculations. The excited-states energy separation was also
much larger than that at any other geometry and is not considered further. The intemal coordinates for
the four optimized structures are given in the supplementary material. There is no gas-phase indole
structure, but the indole group has been determined in two crystal structures (Karle, Britts, and Gum 1964;
Takigawa et al. 1966); these structures differ from each other as much as they do from the theoretical one.
More accurate theoretical ground-state structures can easily be generated using direct Moller-Plesset

methods, but the present structure is compatible with and at a comparable level of accuracy with the




excited states. The excited-state geometries all represent V structures with one ® bond broken. Bond
distances and a V schematic are given in Figure 1, where we see that T shows one specific bond structure

but M and S1 are a mixture of resonance bond structures.

The excited-state calculations are found to require excitations from the tightly bound orbitals.
Therefore, a minimum of 10 doubly (D) occupied orbitals is found necessary in the active space of the
FOCI. This requirefnent limited the number of V orbitals in the active space to one, so the total number
of configurations does not become unmanageable in GAMESS. In a previous study of the indole radicals,
only one V orbital was needed (Krauss and Garmer 1993). The FOCI does provide for some of the
contributions of such V orbitals through single excitations into the virtual space, and the natural orbital
occupancy of the second V orbital is significant for one of the excited states. This limitation in the
number of V orbitals undoubtedly limits the absolute accuracy of the excitation energies. The largest
active space that was used for the data in Table 1 included 15 D orbitals. Increasing the number of D
orbitals from 10 to 15 determined that the energy difference of the excited states as well as their excitation
energy decreased slightly. The dissociation energy of the N-H bond is calculated for the ground and
excited states by assuming adiabatic dissociation. An active space of 11 orbitals is used here to compare

with the neutral radical states previously computed (Krauss and Garmer 1993).

For this case with transitions in the UV, it is not clear that a balanced improvement between the
ground- and excited-state orbitals can be obtained by iterating ground-state natural orbitals. Energies were
computed by iterating the natural orbitals for the ground state at both the X and T geometries, but in all
cases the excited-state energies increased in energy. Convergent behavior is obtained with state-averaged
natural orbitals, but such studies were not completed for indole. We also discovered that starting with
vectors from an RHF calculation of the singlet ground state yields excited-state energies substantially
higher than those started from ROHF vectors. In the first iterative natural orbital (INO) step using the
ROHF vectors, the coupling between the ground and first excited state increases the energy of the excited
state substantially and reduces the energy difference between the L, and Ly states. Although this is in
better agreement with the experiment, too much weight is apparently given to correlating the ground state
relative to the first excited state. If orbitals are first determined by a singles only CI (CIS) starting with
RHF vectors and then iterating on the FOCI natural orbitals with the active space including the one
additional V orbital, this ultimately produces energies similar to those obtained with the ROHF vectors.
Two levels of INO iteration were required, and these lowered the energies of ground and excited states.

This latter procedure was chosen for the X geometry. The FOCI INO result starting with ROHF vectors




MC Geometry and Schematic Bonding

1.398 ~J.4361 395

1,453 36613970

S1 Geometry and Schematic Bonding

Figure 1. Bond distances and schematic of & bonds: X geometry;

T geometry; M geometry; and S1 geometry.




at the T geometry also led to a substantial increase in the energy of the Ly state. Since only the ground-
state energy decreased in the INO procedure for the T geometry, the calculation used the initial ROHF

vectors throughout for the T, M, and S1 geometries.

The dominant configurations and coefficients are presented for the four geometries in Table 2,
illustrating the essential multiconfiguration character of the excited states. These coefficients also allow
us to follow the excited states in the presence of the RF. Total energies, excitation energies, and dipole
moments are given in Table 1, with the oscillator strengths and transition dipoles in Table 3. The in
vacuo and RF results are compared in appropn‘éte tables. Two iterations of the RF were done with the
leveling off of the dipole moments suggesting an approach to convergence. The classical RF shifts are

presented in Table 4.
3. DISCUSSION

The most important question concerns the relative ordering of the excited states in vacuo vs. in a
solvent. From Table 1 we find that AE;, or AE, g is calculated to be 4,473 cm™! at the X geometry in
vacuo, which is substantially larger than the experimental value estimated from the FC maxima of about
2,800 cm! (Ilich, Haydock, and Prendergast 1989). Other estimates run as low as 1,100 cm! (Rizzo,
Park, and Levy 1986) and as high as 3,700 cm™! (Strickland, Horwitz, and Billups 1970). The absorption
RF in water reduces the splitting by about 1,000 cm™ to 3,424 cm™.
is considerably smaller for the T (2,226 cm’l) and S1 (2,372 em™)) geometries but remains large for the
M geometry (4,554 cm™Y). The smaller energy separation between the Lp and L, states at the T geometry
arises entirely from the lower energy of the L, state. This suggests that the T geometry is closer to the

equilibrium geometry of the L, state. At S1 both of the excited-state energies are above those for T and

The in vacuo energy separation

M. But we shall see further on in the discussion that the electronic structures of states 2 and 3 as seen
through the transition dipole moments for S1 may not correspond, as they do at the other geometries, to

states B and A, respectively.

RF calculations for absorption were not done at the T, M, and S1 geometries. However, since the
static dipole moments for all states in the T and M geometries are similar to their corresponding states
using the X geometry, we expect that the reduction in the separation between the L, and Ly states would
be about 1,000 cm™! at these geometries. However, for S1 a smaller shift is expected since the dipole

moments for all of its states are similar.




Table 2. Most Important Configurations (Coefficient 0.1) From In Vacuo FOCI
Using Structure M (Orbitals 1-16 Constitute the V Space)

Ground State

Orbital Occupancies

ict
CSE Coefficient 12 13 14 15 6 2
1 0.90 ¥)) 2 2 2 2 0 0 (0)
4 - =010 ) 2 1 2 2 1 0 0)
5 0.25 ) 1 2 2 2 1 0 ©)
7 -0.12 ) 2 2 2 0 2 0 ©)
6107 012  ©® 2 2 2 1 0 1 (0)
State 2 37,836 cm™!
Orbital Occupancies
SF  Coefficient
¢ oethicien 12 13 14 15 16 17 18 22
2 -0.14 @ 2 2 2 1 1 0 0 0 (0)
3 0.72 Q2 2 2 1 2 1 0 0 0 (©0)
4 -0.32 @ 2 1 2 2 1 0 0 0 (0)
6168 -0.18 @ 2 2 1 1 1 0 0 1 (©0)
6838 0.13 e 2 2 1 1 1 0 1 0 )
7447 -0.37 2 2 2 2 1 0 1 0 0 )
74542 0.10 7)) 1 2 2 1 1 1 0 0 (0)
7508 -0.10 2 2 2 1 1 1 1 0 0 (0)
7509 0.14 2 2 1 2 1 1 1 0 0 (0)
7510° -0.21 ) 1 2 2 1 1 1 0 0 (0)
State 3 42,390 cm™!
Orbital Occupancies
CSF Coefficient
12 13 14 15 16 17 22
2 0.65 9)) 2 2 2 1 1 0 0 )
3 0.32 ) 2 2 1 2 1 0 0 (0)
4 0.44 ) 2 1 2 2 1 0 0 ©0)
5 0.26 ) 1 2 2 2 1 0 0 ©0)
10 0.17 2 1 2 2 1 2 0 0 (0)
6167 -0.12 ) 2 2 2 0 1 0 1 (0)
6169 -0.11 [9)) 2 1 2 1 1 0 1 ©0)
7448 0.13 9)) 2 2 1 2 0 1 0 (0)

Different spin couplings for configuration state functions (CSFs) 7454 and 7510.




Table 3. Indole Transition Probabilities and Oscillator Strengths

Transition Dipole (e-bohr) Oscillator Strength
iel

Geometry Field 12 1’3 12 13
X none 0.873 1.195 0.098 0.203
X 0.842 1.187 0.091 0.197
La 0.632 1.255 0.050 0.209

exp absptn® 0.01-0.04 0.12
T none 0.920 0.961 0.097 0.112
Ly 0.851 1.029 0.075 0.121
M none 0.834 0.879 0.080 0.100
Ly 0.873 0.078 0.063 0.106
S1 none 0.999 1.476 0.128 0.205
La 1.268 1.215 0.197 0.202

*Experimental data are summarized by Callis (1991).

Table 4. Classical Indole Red Shifts

Geometry Absorption Fluorescence
x® -1,115 -2,537
M -1,663 -3,194
Geometry X1 La 1
x® -1,512 - -2,955
M -3,713 -5,915
exp ~—2,000 ~4.,500

*In vacuo FOCI dipole moments are used.
YEOCI dipole moments are determined from RF constructed
for the initial state of the transition.

The transition moments from the ground state to the Ly and L, excited states are the basis for the -
designations (Anderson et al. 1986) which are related to comparable transitions in perimeter x systems
like naphthalene. For this correspondence to hold, the Ly state should have its transition dipole oriented

along the long axis of the molecule. However, at the X geometry this is clearly not true, as seen in

10




Figure 2, in agreement with the semiempirical results (Anderson et al. 1986) and the experiments in
crystals of indole derivatives (Yamamoto and Tanaka 1972; Albinsson and Norden 1992). Gasphase data
have been analyzed to sqggest a smaller angle (Mani and Lombardi 1969), but this result is more indirect.
The present results also agree with experiment and the semiempirical results in finding the angle between

the transition dipoles to the L, and Ly states is closer to 90° or in the present case 66°. At the M and

- T geometries, the first excited-state transition moment is oriented closer to the long axis of the molecule,

but these geometn’eé probably contribute only slightly to the ground-state absorption. The RF transition
moments for M and T clearly show the reversal of the B and A states. The reported absorption transition
moment (Callis 1991) for L, is much larger than that for Ly, which is not in agreement with the

calculated values which are closer in magnitude.

For the S1 geometry, the transition moments behave more like the RF values for M and T. Since this
is also accompanied by a larger dipole moment for the first excited state, we suggest the first excited state
more closely resembles the L, state at thé S1 geometry. However, the electronic structures of these states
alter substantially as a function of geometry, and the correspondence of the moments does not necessarily
describe a pseudocrossing of the states. This cannot be determined by calculations at only selected points

as is done at this time.

Experimental ground-state dipole moments range from 0.814 1o 0.936 e-bohr (1 e-bohr = 2.541765
Debye) (Glasser and Lami 1981; Sun and Song 1977), in good agreement with the theoretical predictions
of 0.78-0.84. The excited-state values are only estimates deduced from RF theory models of the
fluorescent shift or semiempirical calculations. There is general agreement among these models that the
ground-state and Ly dipoles are comparable and the L, dipole is at least 0.75 e-bohr larger as found for
the ab initio dipoles. The dipole moments behave similarly for the X, M, and T geometries and are seen
to be mostly oriented in the same direction. The RF dipole increases only modestly in absorption, with

the ground-state value increasing from 0.8 to 1.1 e-bohr while the L, dipole goes from 2.3 to 2.6 e-bohr.

The RF in water for fluorescence has a dramatic effect on the dipole moments and energies as seen
in Figures 2 and 3. Since the L, state has the largest dipole moment for the T and M geometries, the RF
is large and expected to be most important. At the T geometry, the first iteration already inverts the Ly
and L, states with the L, state now lower by 1,789 cm~! and the inversion increasing to 2,847 cm™’ in
the second iteration (see Table 1C). The dipole moment for the L, state increases from 2.6 to 3.7 e-bohr

and then to 4.1 e-bohr in the two iterations. The dipole moment suggests the iterations are converging.

11
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Gs -59.5°
#3 -62.1°

Figure 2. Transition dipole orientations relative to the indole long axis
for excitation of both excited states from the ground state.
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Figure 3. Dipole moment orientations relative to the indole long axis for all states.
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At the M geometry, the first iteration yields a nearly degenerate set of states, but the A and B states are
still unique electronically. The states invert in the next iteration as seen in Table 1. The RF dipole in L,

will be larger than 4.1 e-bohr. The Ly dipole moment is so similar to that of the ground state that there

is only a small shift for fluorescence from the Ly state.

The L, fluorescent RF interaction is weakest at the X geometry, where the first iteration only reduces
the splitting to 2354 cm~l. The dipole moment increases only to 2.7 e-bohr, and the states are still not
inverted in the second iteration. At T and M geometries corresponding to the breaking of single 7 bonds,
the excited states are more easily perturbed by the RF and very large dipole moments are produced. Only
a few points on the surface have been explored, but it is evident that the excited-state energy minima are
far from the X geometry. At these geometries the ground-state surface energy will have risen
substantially, contributing to a large FC red shift. The energy surface of the Ly state is calculated to be
relatively flat at the X and M points, which is consistent with the observation of a strong (0,0) band in
absorption (Bersohn, Even, and Jortner 1984; Hager and Wallace 1984; Rizzo, Park, and Levy 1986;
Strickland, Horwitz, and Billups 1970). The fluorescent solvent and FC shifts are described in a
qualitative fashion in Figure 2.

Classical estimates of the shift in Table 4 used the FOCI dipole moments as was previously done for
the radicals (Krauss and Garmer 1993). The classical and quantal values are similar, even though they
differ in assumptions regarding the RF contributions from the permanent and polarization dipole of the
solvent. Adiabatic dissociation energies for the N-H bond can be obtained since the radical energies are
available (Krauss and Garmer 1993). The adiabatic asymptotes are presented schematically in Figure 4,
and it is evident that only the ground state is bound with a dissociation energy of 317 kJ. No
experimental value has been found for the dissociation of the N-H bond in indole. The Ly and L, states
are both calculated to be in the dissociative continuum by about 72 and 60 kJ, respectively. Significant
questions need to be discussed regarding, first, the relative accuracy of the adiabatic limits and, second,
the likelihood of barriers to dissociation in the energy surface. The indole excited states are calculated
about 4000 cm™! too high in energy with respect to the ground state, while the neutral radical excitation
energies are much closer to experiment. This suggests that the relative energies of the excited states of

indole and their respective neutral radical asymptotes can shift closer by up to 50 kJ.

The dissociation of the N-H bond should lead to a ¢ radical, but in vacuo both the ground and Ly

states are connected adiabatically to 7 states, suggesting an energy surface barrier must be surmounted for
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in vacuo water

L
A o Lg
L
B n
La
T
Adiabatic Solvent
X FC shift asymptotes shift

Figure 4. Schematic of ground- and excited-state energies describing the FC shift and solvent
shift. Adiabatic dissociation limits of the N—H bond are given illustrating the
dissociative character of both excited states, but only the L., state connects with
a o radical and is likely to dissociate without a barrier.

dissociation. However, the L, state connects to a © radical, and only a small barrier or no barrier is

expected. This supports the assertion that the lack of observation of the L, state in nozzle experiments
may be due as much to dissociation as to not exciting sufficiently high in energy (Glasser and Lami 1981).
In water, the inversion of the populated excited states would alter the adiabatic behavior. However,
dissociation of the excited states should not be considered without explicit inclusion of first-shell
hydrogen-bonded waters and other processes which can occur in solution. Nothing conclusive can be
determined on the dissociative properties of the excited states from this calculation because of the
difficulty of accurate calculations, but the adiabatic analysis suggests that laser-induced fluorescence at

the higher energies may search for emission from the radical excited states in the neighborhood of 580 nm

(Krauss and Garmer 1993).
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4. CONCLUSIONS

The large fluorescent red shift for indole in water is calculated to be due to two large and comparable -
contributions, FC and soivent shifts. Excitation into the M and T excited states breaks at least one of the
= bonds on the benzene ring and distorts the equilibrium geometry from the ground state. This shift in
equilibria is evident in the large FC envelope found in absorption especially for the L, state (Anderson
et al. 1986). With the RF present, the L, state inverts with the Ly state and also will fluoresce to an
excited part of the ground-state surface. The RF coupling to the L, state is so large that it is likely that
further distortion of the geometry will occur to maximize the dipole moment of the excited state. The
present calculations find a very large dipole moment for the excited L, state at the distorted geometries.

Lengthening the C,—C, bond on the pyrrole ring apparently yields a first excited state with electronic
characteristics closer to those of the L, state. This state exhibits a substantial fluorescent red shift and
always remains the first excited state. Excitation of bonds on the pyrrole ring apparently leads ta
different electronic structure and ordering of states than excitations localized on the benzene ring, but the

number of surface points studied here is too small to be more than suggestive.

The electronic properties of the excited states appear to be represented well by the FOCI calculation
as gauged by the dipole moments and the orientation of the transition dipole moments at the X geometry.
The relative energy difference between the L, and Ly states is somewhat too large but qualitatively
reasonable and decreases as the geometry distorts toward the excited-state equilibria. However, the
excitation energies from the ground-state geometry are too large. The limitation in the number of active
orbitals is certainly one cause that has to be examined in future studies. Ab initio calculations are shown
to be needed to determine the variations in the moments and the response to reaction or environmental
fields as a function of geometry. The FOCI appears to be sufficiently accurate for relative energies
between the excited states, but the behavior as the active space of orbitals is expanded is required and

awaits a more robust CI code than presently available.
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